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A simple nonlinear physical system, the driven diode resonator, demonstrates the 
period doubling route to chaos.  Harmonics, subharmonics, and ultraharmonics 
have been identified on the Fourier transform of the diode voltage, and modeling of 
the circuit in P-Spice replicates the experimental data. 
 

Chaos can be defined as a system that 
diverges exponentially from initial positions 
varying by a small degree1.   A driven diode 
resonator is such that exhibits these 
characteristics.  Depending on the frequency or 
amplitude of the input, the output may be either 
periodic or chaotic.   
 
The Circuit: 

 
Chaos is exhibited in the diode resonator 

circuit due to the unrecombined charges that cross 
the p-n junction when the diode is in the forward 
bias mode.  When the diode switches biases, the 
charges diffuse back to their original plate making 
the diode act as a capacitor.  The larger the forward 
current, the greater the amount of charges that 
cross the junction and the longer the system will 
need to return to its reverse bias equilibrium.  If the 
reverse current is unable to reach equilibrium 
before the forward bias, then the next cycle 
depends upon the previous cycle.  This may lead to 
different parameters for the beginning of each 
cycle1.  Under such conditions, the system may 
become chaotic.   

One of the routes to chaos is by period 
doubling.  In this case, the period continues to 
double until there are no more stable states 
available.  When driven at a frequency near the 
diode’s resonant frequency, the circuit can exhibit 
periodic behavior.  As the driving amplitude is 
increased, the periodic state becomes unstable.  
The state divides into two frequencies dependent 
on the resonance.  The harmonic frequency 
remains but a second frequency appears at half the 
harmonic.  This is defined as period doubling.  
Further increase in the amplitude results in the  

splitting of the two periods, giving quadrupling, 
octupling, and finally chaos1.   

A visual representation of this process can 
be seen in Fig. 2B.  Although not drawn to scale, 
you can see in this diagram how the frequency 
splits repeatedly and with a set pattern.  Periodicity 
splits into period doubling, which then splits into 
period quadrupling, and so forth.  Hence we see 
that the system endures more and more period 
bifurcations.  This will continue until the 
separation between the neighboring frequencies 
becomes indistinguishable.  At this point, the 
system becomes unstable and chaotic.  Further 
increase of the voltage will bring the system back 
to a linear state.   
 

 
Fig. 1:  A) Description of the diode resonator circuit.  
Composed of an inductor and diode in series.  The voltage is 
measured across the inductor.  B) Bifurcation diagram for 
the circuit.  As the system approaches chaos, the periodic 
state will divide to a period-2 state, period-4 state, etc., until 
the adjoining states are too close to distinguish. 
 

 A Power Spectrum provides an 
easy way to identify a chaotic system2.  This 
analysis shows us the power vs. frequency for a 
given system. In a periodic system, only one 
harmonic peak occurs, which is associated with 
the driving frequency.  As the system progresses 
towards chaos, more peaks will occur, associated 
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with the harmonics, subharmonics, and 
ultraharmonics of the system.    For a truly chaotic 
system, there should be a spectrum of frequencies 
rather than specific peaks.  However, multiple 
chaos may also occur, in which there is a 
broadening of the spectrum near certain 
frequencies.   

A schematic of our circuit is found in Fig. 
1A.  The inductor and the diode determine the 
resonant frequency of the circuit, which is 
necessary to consider a driving frequency.  This 
frequency was measured as 143 kHz and held 
constant throughout the experiment.  The inductor 
was measured as 16.2 mH, using a notch filter 
circuit as described in Horowitz and Hill3, and the 
internal capacitance of the diode was measured as 
3 nF.   

Based upon an experiment found in Enns2, 
we wished to change one parameter and seek 
chaos.  The variant parameter in this experiment 
was the amplitude of the input voltage.  As the 
input voltage was increased, period bifurcations 
became visible.  The voltage across the diode and 
the input voltage were measured with an 
oscilloscope and LabView.  Input voltages were 
chosen so as to produce a period-1, period-2, 
period-4, period-8, and chaotic output.   Fig. 1B 
shows the bifurcation diagram for the behavior of 
the system.  The system will exhibit up to period-
8 before chaos will appear. 
 
Discussion: 

 
Fig. 2A shows the Power Spectrum of the 

system when exhibiting periodic behavior.  The 
harmonic frequency appears at that of the driving 
force, 143 kHz, while a small ultrasubharmonic 
appears at 286 kHz.  Ultrasubharmonic 
frequencies are found at 

n
mf 0 where n=1 and 

m=1,2,3,…2.   Due to the sheer number of data 
points needed   to create a power spectrum, 10 
scope traces were recorded and combined.    

Fig. 2B is the time series for the periodic 
solution.    This is the raw data the computer 
received from the circuit. This display shows that 
the function of the circuit is similar to a sin wave 
and therefore periodic. 

 

 
Fig. 2: Response of the driven diode resonator when 
exhibiting periodic behavior.  Driven at a frequency of 143 
kHz and amplitude of 50 mV. The harmonic frequency is at 
143 kHz and the ultraharmonic is at 286 kHz (f/2).  A) Power 
Spectrum;  B) Raw data of the diode voltage; C) Phase plot 
of diode voltage vs. drive voltage4. 
 
   Fig. 2C is the X-Y diagram for the 
periodic solution.  This graph demonstrates the 
relationship between the input and output voltages 
of the system.  From this diagram it is visible that 
there is only one frequency in this system. 
 

 

Fig. 3:  Response of the driven diode resonator when 
exhibiting a period-2 solution.  Driven at a frequency of 143 
kHz and a voltage of 178 mV.  The harmonic frequency of 
the system is at 143 kHz and the subharmonic frequency is 
71.5 kHz  (

2
f

).  A) Power Spectrum; B) Raw data of the 

diode voltage; C) Phase Plot of diode voltage vs. drive 
voltage4. 
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 When the driving voltage is increased to 
178 mV, the circuit exhibits its first bifurcation. 
The system has split into two frequencies, one of 
which is the harmonic frequency of the driving 
force, 143 kHz, and the other is half the harmonic 
frequency at 71.5 kHz (Fig. 3A).  This second 
frequency is referred to as the subharmonic 
frequency.  Subharmonic frequencies are found by 

n
f 0  , where n = 1, 2, 4, 8, …2   

This system exhibits the same 
ultraharmonic frequencies as seen in the periodic 
solution, but now there are ultrasubharmonic 
frequencies as well.  The ultrasubharmonic 
frequencies can be found by 

n
mf0 , where n = 1, 2, 

4, …., and m = 1, 2, 3….2 

 Fig. 3B exhibits the time series graph of 
the period-2 solution.  The two different 
frequencies are clearly visible in this display.  The 
small peaks are half way between the large peaks 
and about half the height. 
 Fig. 3C displays the X-Y diagram for the 
period-2 solution.   The large broad peak is the 
harmonic frequency, whereas the thin, small peak 
is the subharmonic frequency.   
 

 
Fig. 4:  Response of the driven diode resonator when 
exhibiting a period-4 solution.  Driven at a frequency of 143 
kHz and a voltage of 220 mV.  The harmonic frequency of 
the system is 143 kHz and the subharmonic frequencies are 
at 71.5 kHz (

2
0f ) and 35.75 kHz (

4
0f ).A) Power 

Spectrum; B) Raw data of the diode voltage; C) Phase Plot 
of diode voltage vs. drive voltage4. 

 When the driving voltage is increased to 
220 mV, the circuit exhibits a second bifurcation 
into period quadrupling.  In period quadrupling, 
they system has three stable frequencies.  The 
harmonic frequency of the system remains at 143 
kHz, but there are now two subharmonic 
frequencies found at 71.5 kHz and 35.75 kHz 
(Fig. 4A).  The large increase in the peak of the 
second subharmonic is due to the addition of the 
ultrasubharmonic frequency of n=4. 
 Fig. 4B is the time series graph of the 
period-4 solution.  In this system, there are four 
distinct peaks for the four frequencies of the 
system.  The two small peaks are difficult to see 
in this scale. 

Fig. 4C displays the X-Y diagram for the 
period-4 solution.  This graph depicts the 
differences between the individual frequencies 
and amplitudes of the system. 
  Fig. 5 shows us the final bifurcation prior 
to chaos.  The amplitude range of the period-8 
solution is very small, and it took a few trials to 
obtain this solution.   Again we see the harmonic 
at 143 kHz, and the second subharmonic as the 
largest peak.  The increase of the ultraharmonic is 
due to its splitting.   
 

   
Fig. 5: Response of the driven diode resonator 

when exhibiting a period-8 solution. Driven at a frequency 
of 143 kHz and amplitude of 238 mV. A) Power Spectrum; 
B) Raw data of the diode voltage; C) Phase Plot of diode 
voltage vs. drive voltage4.   

 
Due to the fact that the period-8 solution is 

very hard obtain, the peak of the subharmonic for 
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the n = 8 state is very small.  This makes visibility 
at any amplitude difficult. 

 

 
Fig. 6: Response of the driven diode resonator 

when exhibiting multiple chaotic behavior.  Driven at a 
frequency of 143 kHz and amplitude of 304 mV.  Peak 
frequencies are still visible at the resonant frequency 143 
kHz but a wide spectrum of frequencies is seen between the 
harmonics.  

 
Fig. 6 exhibits the chaotic behavior of the 

system.  We can see that this is multiple chaos due 
to the broadening of the frequency spectrum 
around certain frequencies.  The resonant 
frequency is still visible at 143 kHz.  As we can 
see from the X-Y plot4, there is no one frequency 
associated with the driving frequency, and thus 
the plot takes up all of phase space.  If we were to 
watch the phase plot evolve, there would be 
pattern to the evolution of the phase plot. 
 
The Model: 
 
 In order to validate our results, the above 
circuit was simulated using a program called P-
Spice.  The equation for the circuit5 is: 

Diodein VV
dt
dIL −=  

=
dt

dV
C Diode {I, when the diode is conducting 

           0, when not 
By inserting the same circuit diagram shown in 
fig. 1A, and varying the voltage amplitude of the 
input, we were able to simulate the following 
results: 

The harmonic frequency obtained from the 
simulation is once again the same as the 
frequency observed from the experimental results.  
The subharmonic frequency of this system differs 
from the experimental frequency by 0.2%.  The 
difference between the two systems is within 
experimental error.  Our simulation of the 
experiment is valid. 
  
 

 
Fig. 7:  Computer simulation of an FFT for a periodic 
solution to the diode resonator circuit.  Resonant frequency 
is found at 143 kHz and an ultraharmonic frequency can be 
seen at 286 kHz. 
 
 The harmonic frequency obtained from the 
simulation is the same as the harmonic frequency 
observed from the experimental results.  The 
ultraharmonic frequency of the simulation is also 
equal to the ultraharmonic frequency of the 
experimental results.  These two figures lead us to 
believe that our findings were accurate.  
 

 
Fig. 8:  Computer simulation of an FFT for a period-2 
solution to a diode resonator circuit.  The resonant 
frequency is found at 143 kHz and the subharmonic 
frequency can be seen at 71.3 kHz. 
 
Conclusions:  

The change in the amplitude of our driving 
frequency had a tremendous effect upon the 
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outcome of our system.  A mere increase of 200 
mV progressed the system from   periodic to 
chaotic.  We also saw that this progression was 
predictable, as the bifurcation diagram suggested.  

We were able to identify the harmonics, 
subharmonics, and ultraharmonics in accordance 
to prediction.   
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